Skip to main content


Zutaten: Zucker, Kakaomasse (50%), Milchzucker, Weizenmehl, Vollmilchpulver, Magermilchpulver, Butterreinfett, Sahnepulver, Butter (1,4%)
Kann Spuren von Analysis und Geometrie enthalten.

2020_13_buchen-titel

Exponentielles Buchenwachstum

Justin und sein Vater sind nun mit ihrer Gartenarbeit fertig. Sie haben einen Baum gepflanzt und den Zaun repariert. Jetzt geht Justin wieder an seine Matheaufgaben. Unter dem Stichpunkt exponentielles Wachstum mit der e-Funktion wird in einer Aufgabe das Wachstum von Buchen modelliert. So soll der Durchmesser d einer Rotbuche in den ersten 75 Jahren nach dem Gesetz

wachsen, t ist die Zeit in Jahren. Die Aufgabe besteht darin, zu einem Durchmesser das Alter herauszufinden. Weiterlesen

2020_11_ableitung_titel

Was es mit 0.693147 auf sich hat

Fabian, der praktisch Veranlagte, kämpft sich immer noch allein zu Hause durch seine Aufgaben durch. Er hat nun die Exponentialfunktion

verstanden. Jetzt geht es um die Ableitung der Funktion. Dazu sollen die Schüler und Schülerinnen ihren GTR benutzen und damit die Ableitung dieser Funktion berechnen, um dann die Formel für die „richtige“ Ableitung f‘(x) zu erraten. Die Ableitung und die originale Funktion haben einen Quotienten von

Weiterlesen

2020_09_kaefer-titel

Wachstumsprozesse

Finja, Justin und Fabian holen den verpassten Unterricht nach, den ihre Mitschüler und Mitschülerinnen in den letzten Wochen zu Hause machen mussten. Auch sie sind jetzt zu Hause. Sie sollen eine Aufgabe unter der Überschrift Wachstumsprozesse mit der e-Funktion beschreiben lösen. Die Aufgabe geht so:

In einem Labor wird das Wachstum einer Insektenpopulation untersucht. Ein Anfangszustand von 38 Insekten nimmt wöchentlich um 16,2 % zu.
a) Beschreiben Sie das Wachstum der Insektenpopulation mithilfe der e-Funktion.
b) …

Weiterlesen

v_03_gletscher_titel_01

Die Vermessung des Hintereisferners

Heute geht es wieder nach draußen zum Hintereisferner, diesmal nicht zum Ausblick, sondern direkt ins Eis. Charly, Max, Finja, Fabian und Justin schauen sich das Eis genauer an. Heute ist ein Spezialist von der Uni dabei, Max und Charly natürlich auch.

Spezialist Kinder, wir haben an der Uni ein Modell für alle Kees - ah - Gletscher der Welt gemacht. Wir können damit ausrechnen, wie sich das Eis entwickelt. Schaut mal hier, dieser Hintereisferner liegt in einem Tal, da können wir mal einen parabolischen Querschnitt annehmen. Weiterlesen

v_02_gletscher

Warum die einfachsten Gletschermodelle nichts taugen

Nun ist es soweit, Charly macht mit einigen seiner Schüler und Schülerinnen eine Expedition nach Kurzras in Südtirol (Italien) nahe der österreichischen Grenze. In den Ötztaler Alpen liegt nämlich der Gletscher Hintereisferner. Sie machen eine geführte Wanderung zum Gletscher und lassen sich von einem Bergführer begleiten. Max ist auch mitgekommen, er fotografiert, filmt und berichtet für eine Berliner Zeitung.

Trotz einiger Schwierigkeiten kommen sie am Hintereisferner an. Die Gruppe bewundert das Tal, das mal vom Gletscher ausgefüllt war. Letzte Woche hat es geschneit und der Gletscher hat etwas zugenommen, sagt der Bergführer. Im Sommer nimmt er wieder ab. Aber wie kann man die Eiszu- oder -abnahme messen? Weiterlesen

iV_37_eiszeit-titel_02

Die Berechnung der neuen Eiszeit

Charly ist am Wochenende wieder nach Berlin gekommen und besucht Max. Halberfroren kommt er in Max‘ Wohnung an.

Max Hi Charly, komm rein! Wie geht’s?

Charly Max, schön, wieder in Berlin zu sein, schön warm hast Du's hier! Mir geht's gut, aber …

Max Aber?

Charly Ich hab‘ ein Problem. Ich habe so 'ne blöde Matheaufgabe im Lehrplan, dass ich mit meinem Gewissen kämpfen muss. Ich weiß nicht weiter, wie ich damit umgehe. Weiterlesen