Skip to main content


Zutaten: Zucker, Kakaomasse (50%), Milchzucker, Weizenmehl, Vollmilchpulver, Magermilchpulver, Butterreinfett, Sahnepulver, Butter (1,4%)
Kann Spuren von Analysis und Geometrie enthalten.

03_2023_blumen_reihe_55_titel_03

Charlys Lösung der IGA-Aufgabe

Charly wundert sich, dass Rikes "seriöse" Lösung der IGA-Abiaufgabe ein anderes Ergebnis als die Musterlösung liefert. Rike hat ein regelmäßiges Muster, das die Anforderung von 6 Blumen pro m² erfüllt, gefunden und damit die gegebene Fläche zwischen den Kurven und der -Achse von knapp 30 m² ausgelegt.

02_2023_blumen_flaechen_05
Fläche , die mit Blumen zu belegen ist. Für die Formeln von und siehe Beitrag Die IGA-Aufgabe.

Bei der Musterlösung war die Fläche unabhängig von der Geometrie zu bepflanzen – aber eben nur im Mittel.

Weiterlesen

2020_28_tafeldreieck-titel

Wie Schüler:Innen und Lehrer:Innen an parallelen Geraden und Koordinatensystemen verzweifeln

Ben und Rike sitzen zusammen, Rike erzählt eine Geschichte aus ihrem Matheunterricht damals in der Schule.

Die Verzweiflung von Rikes Lehrer

Rike Als ich in die weiterführende Schule kam, hatten wir endlich Geometrie: Punkte, Geraden, Kreise, wir haben Winkel gemessen, Dreiecke gezeichnet usw. Ich erinnere mich noch, als unser Mathelehrer, Herr Wiezorek, uns parallele Geraden erklärte: Weiterlesen

2020_13_buchen-titel

Exponentielles Buchenwachstum

Justin und sein Vater sind nun mit ihrer Gartenarbeit fertig. Sie haben einen Baum gepflanzt und den Zaun repariert. Jetzt geht Justin wieder an seine Matheaufgaben. Unter dem Stichpunkt exponentielles Wachstum mit der e-Funktion wird in einer Aufgabe das Wachstum von Buchen modelliert. So soll der Durchmesser d einer Rotbuche in den ersten 75 Jahren nach dem Gesetz

wachsen, t ist die Zeit in Jahren. Die Aufgabe besteht darin, zu einem Durchmesser das Alter herauszufinden. Weiterlesen

2020_11_ableitung_titel

Was es mit 0.693147 auf sich hat

Fabian, der praktisch Veranlagte, kämpft sich immer noch allein zu Hause durch seine Aufgaben durch. Er hat nun die Exponentialfunktion

verstanden. Jetzt geht es um die Ableitung der Funktion. Dazu sollen die Schüler und Schülerinnen ihren GTR benutzen und damit die Ableitung dieser Funktion berechnen, um dann die Formel für die „richtige“ Ableitung f‘(x) zu erraten. Die Ableitung und die originale Funktion haben einen Quotienten von

Weiterlesen

2020_09_kaefer-titel

Wachstumsprozesse

Finja, Justin und Fabian holen den verpassten Unterricht nach, den ihre Mitschüler und Mitschülerinnen in den letzten Wochen zu Hause machen mussten. Auch sie sind jetzt zu Hause. Sie sollen eine Aufgabe unter der Überschrift Wachstumsprozesse mit der e-Funktion beschreiben lösen. Die Aufgabe geht so:

In einem Labor wird das Wachstum einer Insektenpopulation untersucht. Ein Anfangszustand von 38 Insekten nimmt wöchentlich um 16,2 % zu.
a) Beschreiben Sie das Wachstum der Insektenpopulation mithilfe der e-Funktion.
b) …

Weiterlesen

v_02_gletscher

Warum die einfachsten Gletschermodelle nichts taugen

Nun ist es soweit, Charly macht mit einigen seiner Schüler und Schülerinnen eine Expedition nach Kurzras in Südtirol (Italien) nahe der österreichischen Grenze. In den Ötztaler Alpen liegt nämlich der Gletscher Hintereisferner. Sie machen eine geführte Wanderung zum Gletscher und lassen sich von einem Bergführer begleiten. Max ist auch mitgekommen, er fotografiert, filmt und berichtet für eine Berliner Zeitung.

Trotz einiger Schwierigkeiten kommen sie am Hintereisferner an. Die Gruppe bewundert das Tal, das mal vom Gletscher ausgefüllt war. Letzte Woche hat es geschneit und der Gletscher hat etwas zugenommen, sagt der Bergführer. Im Sommer nimmt er wieder ab. Aber wie kann man die Eiszu- oder -abnahme messen? Weiterlesen