Skip to main content


Zutaten: Zucker, Kakaomasse (50%), Milchzucker, Weizenmehl, Vollmilchpulver, Magermilchpulver, Butterreinfett, Sahnepulver, Butter (1,4%)
Kann Spuren von Analysis und Geometrie enthalten.

2020_32-nord-ostsee-kanal-titel

Ein Hilbertraum für den Nord-Ostsee-Kanal

Rike und Ben sind immer noch am Nord-Ostsee-Kanal bei Brunsbüttel. Hinter jedem Schiff bilden sich Wellen. Diese genügen der Navier-Stokes-Gleichung – und die ist immer noch eine Herausforderung. Recht einfach sind gleichmäßige Wellen in einer Richtung zu verstehen. Sie bilden eine spezielle Lösung dieser Gleichung. Rike konstruiert auch noch einen passenden Hilbertraum dafür.

Weiterlesen

pythagoreische Tripel

Das 2-Farben-Problem für pythagoreische Tripel

Ben und Rike sind wieder am Nordseestrand. Heute erzählt Ben, womit er sich im Urlaub beschäftigen möchte: Er möchte endlich den Beweis von Heule et al. über die Färbung in 2 Farben der pythagoreischen Tripel in Ruhe durchgehen. Der Beweis verläuft computerunterstützt und hatte 2016 für großes Aufsehen gesorgt. Die Aufgabe geht so: Alle natürlichen Zahlen von 1 bis N werden als Kästchen gezeichnet. Diese Kästchen sollen mit 2 Farben so gefärbt werden, dass die pythagoreischen Tripel nicht einfarbig bleiben. Weiterlesen

2020_11_ableitung_titel

Was es mit 0.693147 auf sich hat

Fabian, der praktisch Veranlagte, kämpft sich immer noch allein zu Hause durch seine Aufgaben durch. Er hat nun die Exponentialfunktion

verstanden. Jetzt geht es um die Ableitung der Funktion. Dazu sollen die Schüler und Schülerinnen ihren GTR benutzen und damit die Ableitung dieser Funktion berechnen, um dann die Formel für die „richtige“ Ableitung f‘(x) zu erraten. Die Ableitung und die originale Funktion haben einen Quotienten von

Weiterlesen

finja_matheschulbuch

Komplexe Sinus- und Kosinus-Funktionen

Finja ist in Quarantäne, wie die anderen Italienrückkehrer auch. Den offenen Brief hat sie mit Justin und Fabian verfasst, Max hat ihn online gestellt und wichtigen Institutionen zugeschickt. Die Hausaufgaben sind schnell erledigt, ihr ist langweilig. Sie stöbert im Haus und findet auf dem Dachboden ein uraltes Matheschulbuch (1961).

mathebuch 1961

Darin findet sie die Aufgabe

Weiterlesen

v_03_gletscher_titel_01

Die Vermessung des Hintereisferners

Heute geht es wieder nach draußen zum Hintereisferner, diesmal nicht zum Ausblick, sondern direkt ins Eis. Charly, Max, Finja, Fabian und Justin schauen sich das Eis genauer an. Heute ist ein Spezialist von der Uni dabei, Max und Charly natürlich auch.

Spezialist Kinder, wir haben an der Uni ein Modell für alle Kees - ah - Gletscher der Welt gemacht. Wir können damit ausrechnen, wie sich das Eis entwickelt. Schaut mal hier, dieser Hintereisferner liegt in einem Tal, da können wir mal einen parabolischen Querschnitt annehmen. Weiterlesen

v_02_gletscher

Warum die einfachsten Gletschermodelle nichts taugen

Nun ist es soweit, Charly macht mit einigen seiner Schüler und Schülerinnen eine Expedition nach Kurzras in Südtirol (Italien) nahe der österreichischen Grenze. In den Ötztaler Alpen liegt nämlich der Gletscher Hintereisferner. Sie machen eine geführte Wanderung zum Gletscher und lassen sich von einem Bergführer begleiten. Max ist auch mitgekommen, er fotografiert, filmt und berichtet für eine Berliner Zeitung.

Trotz einiger Schwierigkeiten kommen sie am Hintereisferner an. Die Gruppe bewundert das Tal, das mal vom Gletscher ausgefüllt war. Letzte Woche hat es geschneit und der Gletscher hat etwas zugenommen, sagt der Bergführer. Im Sommer nimmt er wieder ab. Aber wie kann man die Eiszu- oder -abnahme messen? Weiterlesen