Skip to main content


Zutaten: Zucker, Kakaomasse (50%), Milchzucker, Weizenmehl, Vollmilchpulver, Magermilchpulver, Butterreinfett, Sahnepulver, Butter (1,4%)
Kann Spuren von Analysis und Geometrie enthalten.

2020_26_fresnel-lila-titel

Lilas Katastrophenmathematik

Lila erzählt Max von weiteren Funktionen des Geologen und Erdbeben- und Nukleartestforschers von Seggern.

Lila Die letzte Funktion

hat für a = 0 Polstellen. Wenn ich die Fläche von 0 bis zur 1. Polstelle berechne – die könnte ja für die Energie stehen, die bei einem solchen Erdbeben frei wird – so kommt leider unendlich raus. D.h. schon ein einziger Stoß von dieser Sorte setzt viel zu viel Energie frei. Ich find‘s jammerschade, dass die bis jetzt nicht konstruktiv genutzt werden kann, sondern nur destruktiv ist. Da wird mir beim Rechnen richtig unbehaglich. Weiterlesen

2020_25_tsunami-titel

Lilas Wellenmathematik

Lila erzählt Max von ihrem Mathestudium an einer Berliner Uni. Sie war sehr wütend über den Rausschmiss von Kubicki und hatte sich erst einmal zurückgezogen. Von Zeit zu Zeit ging sie in die Unibibliothek. So einen Wissensschatz hat sie in Indien noch nie gesehen. Es gefällt ihr dort. Sie wundert sich, dass so wenige ihrer Kommilitonen dort lernen. Sie hat ein bemerkenswertes Buch entdeckt.

Lila Dieses CRC Handbook of Mathematical Curves and Surfaces ist von von Seggern, von einem Geologen. Es ist von 1990. Da war die very first time of personal computer gerade vorbei, und die Zeiten guter grafischer Darstellung noch nicht angebrochen. Immerhin hat er mit der „High-level programming language“ FORTRAN! seine Kurven berechnet. Von Seggern ist Spezialist für Erdbeben und Analysen von unterirdischen Nukleartests. Er hat ca. 500 Kurven und Flächen gezeichnet, einfach, um einen grafischen Überblick zu bekommen und seiner Firma zur Verfügung zu stellen. Die meisten Kurven sind parameterabhängig.

Weiterlesen

2020_13_buchen-titel

Exponentielles Buchenwachstum

Justin und sein Vater sind nun mit ihrer Gartenarbeit fertig. Sie haben einen Baum gepflanzt und den Zaun repariert. Jetzt geht Justin wieder an seine Matheaufgaben. Unter dem Stichpunkt exponentielles Wachstum mit der e-Funktion wird in einer Aufgabe das Wachstum von Buchen modelliert. So soll der Durchmesser d einer Rotbuche in den ersten 75 Jahren nach dem Gesetz

wachsen, t ist die Zeit in Jahren. Die Aufgabe besteht darin, zu einem Durchmesser das Alter herauszufinden. Weiterlesen

2020_07_corona_titel

Ausblick für die Transportgleichung

Finja, Fabian, Justin, Charly und Max müssen jetzt nach Hause fahren. Die Kinder und Charly nach NRW, Max fährt nach Berlin. Zu Hause kommen sie in eine 14-tägige Quarantäne. Aber mit modernen Medien können sie sich austauschen.

Justin schreibt an alle Hallo! Wie geht es euch? Geht es irgendwie weiter mit unserem Gletscher-Projekt? Sollen wir hier Däumchen drehen?

Finja antwortet an alle Hallo zusammen! Ich habe zwar etwas Fieber und Husten, aber mir ist langweilig! Gestern, als ich so im Bett lag, habe ich mir unsere Rechnung noch mal angeschaut. Da ist mir aufgefallen, dass wir in unserem Eifer bei der Berechnung der Differenzengleichung die eigentliche Fragestellung vergessen haben. Was haben wir eigentlich ausgerechnet? Weiterlesen

2020_06_gletscher-titel

Differenzenschema für die Gletschergleichung

Heute fahren Finja, Fabian, Justin, Charly und Max mit dem Wissenschaftler von der Uni zum Teufelsegg (3050 m). Ausnahmsweise dürfen sie heute mit dem Lift hochfahren, sie sind ja keine Touristen. Die schönste Hütte Südtirols ist leider geschlossen. Sie wollen die Wetterstation Teufelsegg am Hintereisferner besichtigen. Dort treffen sie den Spezialisten Matthias von der Uni.

Matthias Seid gegrüßt, ihr Buben und mein Mädel, wie ischts? Wir stehen grad hier auf 3000 m, wo die größte Schnee- und Eisfläche ist, hier ist ungefähr die Stelle, wo die Massenbilanz des Gletschers ihr Vorzeichen ändert. Das ist auch die Stelle, wo sich der Eisfluss im Vorzeichen ändert. Nach oben war bis jetzt immer ewiges Eis, nach unten ist es – natürlich im Jahresmittel – geschmolzen. Das muss man alles berücksichtigen, um die Dynamik am Kees zu simulieren. Weiterlesen

schwache_gletscherloesungen-titel

Ein schwache Gletscherlösung

Finja, Fabian, Justin, Charly und Max sitzen in Italien fest. Sie müssen noch ein bisschen ausharren, kein Busunternehmen will sie nach Hause fahren. Aber das macht nichts. Sie freuen sich über die Berge, fahren ein bisschen Ski, messen Temperaturen, untersuchen den Hintereisferner und diskutieren das Open Global Glacier Model (OGGM) mit der partiellen DGL

wobei
S ... Querschnittsfläche durch den Gletscher mit Parabelform,
w … Breite des Gletschers
uVektor für die Geschwindigkeit, mit der sich das Eis bewegt oder Wasser wegfließt
… Masseänderung

sind. Sie wollten diese Gleichung entlang eines Weges vom Gletschergipfel bis zum Fuß beschreiben, jeden Querschnitt, Stück für Stück. Inzwischen haben Justin und Charly sich im Internet über diese Gleichung informiert und festgestellt, dass dies die sogenannte Transportgleichung ist, hier ist es eine lineare. Sie sieht einfach aus, sie beschreibt den Transport von Flüssigkeiten mit bekannten Geschwindigkeiten u. Diese Gleichung ist immer noch eine große mathematische Herausforderung. Im nichtlinearen Fall heißt sie Navier-Stokes-Gleichung und zählt zu den Millenium-Problemen der Mathematik. Weiterlesen

2020_04_gletscher_titel

Wie schnell das Eis schmilzt

Charly, Max, Finja, Fabian und Justin sind immer noch auf Expedition am Hintereisferner. Charly ist ihr Lehrer, der Alles organisiert, Max ist sein Freund, der Alles für die Sponsoren und die Schule fotografiert. Sie haben diskutiert, dass es nicht genügt, aus den Messwerten Vorhersagen durch Interpolation zu machen, denn man kann durch geeignete 4 Punkte sowohl das Wachsen des Gletschers als auch durch andere 4 Punkte das Schmelzen des Gletschers vorhersagen. Außerdem haben sie die wichtigsten physikalischen Prozesse am Gletscher besprochen und überlegt, wie man die Gletscherhöhe aus physikalischen Messgrößen berechnen kann. Jetzt wollen sie Vorhersagen über die Gletscherentwicklung machen. Weiterlesen

v_03_gletscher_titel_01

Die Vermessung des Hintereisferners

Heute geht es wieder nach draußen zum Hintereisferner, diesmal nicht zum Ausblick, sondern direkt ins Eis. Charly, Max, Finja, Fabian und Justin schauen sich das Eis genauer an. Heute ist ein Spezialist von der Uni dabei, Max und Charly natürlich auch.

Spezialist Kinder, wir haben an der Uni ein Modell für alle Kees - ah - Gletscher der Welt gemacht. Wir können damit ausrechnen, wie sich das Eis entwickelt. Schaut mal hier, dieser Hintereisferner liegt in einem Tal, da können wir mal einen parabolischen Querschnitt annehmen. Weiterlesen

v_02_gletscher

Warum die einfachsten Gletschermodelle nichts taugen

Nun ist es soweit, Charly macht mit einigen seiner Schüler und Schülerinnen eine Expedition nach Kurzras in Südtirol (Italien) nahe der österreichischen Grenze. In den Ötztaler Alpen liegt nämlich der Gletscher Hintereisferner. Sie machen eine geführte Wanderung zum Gletscher und lassen sich von einem Bergführer begleiten. Max ist auch mitgekommen, er fotografiert, filmt und berichtet für eine Berliner Zeitung.

Trotz einiger Schwierigkeiten kommen sie am Hintereisferner an. Die Gruppe bewundert das Tal, das mal vom Gletscher ausgefüllt war. Letzte Woche hat es geschneit und der Gletscher hat etwas zugenommen, sagt der Bergführer. Im Sommer nimmt er wieder ab. Aber wie kann man die Eiszu- oder -abnahme messen? Weiterlesen

iV_37_eiszeit-titel_02

Die Berechnung der neuen Eiszeit

Charly ist am Wochenende wieder nach Berlin gekommen und besucht Max. Halberfroren kommt er in Max‘ Wohnung an.

Max Hi Charly, komm rein! Wie geht’s?

Charly Max, schön, wieder in Berlin zu sein, schön warm hast Du's hier! Mir geht's gut, aber …

Max Aber?

Charly Ich hab‘ ein Problem. Ich habe so 'ne blöde Matheaufgabe im Lehrplan, dass ich mit meinem Gewissen kämpfen muss. Ich weiß nicht weiter, wie ich damit umgehe. Weiterlesen